RS 2247911 polymorphism of GPRC6A gene and serum undercarboxylated-osteocalcin are associated with testis function
Purpose
Undercarboxylated-Osteocalcin (ucOCN), acting on its putative receptor GPRC6A, was shown to stimulate testosterone (T) production by Leydig cells in rodents, in parallel with the hypothalamus-pituitary–gonadal axis (HPG) mediated by luteinizing hormone (LH). The aim of this cross-sectional study was to evaluate the association among serum ucOCN, rs2247911 polymorphism of GPRC6A gene and the endocrine/semen pattern in a cohort of infertile males, possibly identifying an involvement of the ucOCN-GPRC6A axis on testis function.
Methods
190 males, including 74 oligozoospermic subjects, 58 azoosperminc patients and 58 normozoospermic controls, were prospectively recruited at the Orient Hospital for Infertility, Assisted Reproduction and Genetics in Syria (Study N. 18FP), from July 2018 to June 2020. Outpatient evaluation included the clinical history, anthropometrics and a fasting blood sampling for hormonals, serum OCN (both carboxylated and undercarboxylated), glycemic and lipid profile and screening for rs2247911 GPRC6A gene polymorphism.
Results
Higher serum ucOCN associated with higher T and HDL-cholesterol (respectively: r = 0.309, P < 0.001 and r = 0.248, P = 0.001), and with lower FSH (r = – 0.327, P < 0.001) and LDL-cholesterol (r = – 0.171; P = 0.018). Patients bearing the GG genotype of rs2247911 had higher sperm count compared to GA genotype (P = 0.043) and, compared to both AG and AA genotypes, had higher serum T (P = 0.004, P = 0.001) and lower triglycerides levels (P = 0.002, P < 0.001). Upon normalization for LH levels and body mass index, rs2274911 and ucOCN were significantly associated with higher serum T at linear stepwise regression analysis (P = 0.013, P = 0.007).
Conclusions
Our data suggest the involvement of ucOCN-GPRC6A axis in the regulation of T production by the testis, subsidiary to HPG.